

Securely backing up GPG private keys
... to the cloud‽

Joey Hess
Linux.Conf.Au 2017

Imagine if everyone used GPG

In a world where everyone has a GPG key...

In a world where everyone has a GPG key...

Everyone has a key backup problem.

GPG key backup methods

● Print out GPG key
– paperkey(1)
– Hard to back up
– Hard to restore

● Backup $HOME to encrypted
cloud storage

– obnam(1) / attic(1)
– Encrypted using what key?

● Shard and store on USB
drives, etc, scattered here
and there
– Not automated

● Backup $HOME to cloud
storage
– Not exactly secure

GPG key backup methods

● Don’t back up GPG key
– Common approach

GPG key backup methods

● Don’t back up GPG key
– Common approach

keysafe

● GPG key backup to cloud servers
● Securely
● Easily

keysafe backup (1/4)

keysafe backup (2/4)

keysafe backup (3/4)

keysafe backup (3/4)

keysafe backup (4/4)

keysafe restore (1/4)

keysafe restore (2/4)

keysafe restore (3/4)

keysafe restore (4/4)

● Wait 25 minutes to 1 hour for decryption...

keysafe’s building blocks

● argon2
● Shamir Secret Sharing
● AES
● The Cloud
● Tor
● zxcvbn

argon2

● Password hash
● Password Hashing

Competition winner (2015)
https://password-hashing.net/

● Memory-Hard
● GPU and ASIC cracking

resistance

● Tunable difficulty
– Iterations
– Memory use
– Threads

https://password-hashing.net/

Shamir Secret Sharing

● Boring 70’s technology
● Also completely awesome

secret

shareshareshare

secret

From secret to storable objects

secret + checksum + sizeAES key

pad to multiple of 32 kb
AES

encrypted data

(chunks are 32 kb)chunkchunk

(share numbers omitted)Shamir Shamir

share share share share share share

From objects to secret

secret + checksumAES key

unpad
AES

encrypted data

chunkchunk

Shamir Shamir

share share share share

AES key generation

1 random bytePassword Name Other name

salt

argon2 12 seconds

AES key

AES key re-generation

0-255?Password Name Other name

salt

argon2 25 minutes (average)

AES key

Password cracking cost

● 50 minutes work per guess to generate all 256 possible AES keys

● Weak password (30 entropy) 51072 CPU-years
● Bad password (19 entropy) 25 CPU-years

Defenses

A. Password

B. Object IDs

C. Keysafe servers

keysafe servers

● Store only fixed size objects (no large data)
● Store an object by ID
● Retrieve object by ID
● No object ID enumeration
● Self-tuning proof of work to access
● Accessible only via Tor

keysafe servers

● Other server requirements and best practices (warrant canary)

https://joeyh.name/code/keysafe/servers/

● As long as 2 of 3 keysafe servers are uncompromised, no mass
password cracking.

● Best hosted by well-known, broadly trusted organizations.

https://joeyh.name/code/keysafe/servers/

Object ID generation

Name Other name Keyid

saltcombined name

argon2 10 minutes

base ID

+1
+2

+3

ID1

ID2

ID3

sha256

sha256

sha256

Object IDs

● Attacker needs object IDs to download objects from servers
● Each name guess takes 10 minutes CPU time to calculate

object IDs

● Two colluding servers can perform a correlation attack to find
related object IDs

● Servers don’t record timestamps, or keep logs, to prevent
correlation attacks after the fact

Current status

● keysafe client and server implementation in Haskell (3600 LoC)
● In Debian (experimental)
● Needs more design and implementation security review

● Three keysafe servers

1) Purism

2) Faelix

3) Mine at Digital Ocean
● More servers needed

https://puri.sm/
http://www.faelix.net/

Is keysafe safe enough?

Option for the more paranoid

● Generate 6 shares, with 4 shares needed to recover GPG key
● Store 3 on keysafe servers
● Store 3 locally

● 1 local share + 3 from servers
● 3 local shares + 1 from server

● 64kb share can be stored locally in a variety of hard to detect ways
● End of partition
● Stenanography

Future proofing keysafe

● Decisions, decisions
– argon2 tuned to take 12 seconds on modern hardware
– argon2 tuned to take 10 minutes on modern hardware
– Shamir with 2 of 3 shares
– 1 byte random salt
– AES 256 CBC

● May need to change in future in a new version
● Version number metadata would allow partitioning shards
● Solution: Varry object ID generation argon2 memory use parameter depending on

version

keysafe

https://joeyh.name/code/keysafe/

Thanks

 https://patreon.com/joeyh

https://joeyh.name/code/keysafe/
https://patreon.com/joeyh

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

