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Imagine if everyone used GPG



  

In a world where everyone has a GPG key...



  

In a world where everyone has a GPG key...

Everyone has a key backup problem.

                  



  

GPG key backup methods

● Print out GPG key
– paperkey(1)
– Hard to back up
– Hard to restore

● Backup $HOME to encrypted 
cloud storage

– obnam(1) / attic(1)
– Encrypted using what key?

● Shard and store on USB 
drives, etc, scattered here 
and there
– Not automated

● Backup $HOME to cloud 
storage
– Not exactly secure



  

GPG key backup methods

● Don’t back up GPG key
– Common approach



  

GPG key backup methods

● Don’t back up GPG key
– Common approach



  

keysafe

● GPG key backup to cloud servers
● Securely
● Easily



  

keysafe backup (1/4)



  

keysafe backup (2/4)



  

keysafe backup (3/4)



  

keysafe backup (3/4)



  

keysafe backup (4/4)



  

keysafe restore (1/4)



  

keysafe restore (2/4)



  

keysafe restore (3/4)



  

keysafe restore (4/4)

● Wait 25 minutes to 1 hour for decryption...



  

keysafe’s building blocks

● argon2
● Shamir Secret Sharing
● AES
● The Cloud
● Tor
● zxcvbn



  

argon2

● Password hash
● Password Hashing 

Competition winner (2015) 
https://password-hashing.net/

● Memory-Hard
● GPU and ASIC cracking 

resistance

● Tunable difficulty
– Iterations
– Memory use
– Threads

https://password-hashing.net/


  

Shamir Secret Sharing

● Boring 70’s technology
● Also completely awesome

                              

                                                                  

                                    

                                    

secret

shareshareshare

secret



  

From secret to storable objects

                               

                                                    

                                                    

                                       

                             

                                 

                                                                          

                                               

         

secret + checksum + sizeAES key

pad to multiple of 32 kb
AES

encrypted data

(chunks are 32 kb)chunkchunk

(share numbers omitted)Shamir Shamir

share share share share share share



  

From objects to secret

                               

                                                    

                                                    

                                       

                             

                                 

                                                                          

                                               

         

secret + checksumAES key

unpad
AES

encrypted data

chunkchunk

Shamir Shamir

share share share share



  

AES key generation

                   

                  

                                                       

                                         

                                                                

                                             

                                           

1 random bytePassword Name Other name

salt

argon2 12 seconds

AES key



  

AES key re-generation

                   

                  

                                                       

                                         

                                                                

                                             

                                           

0-255?Password Name Other name

salt

argon2 25 minutes (average)

AES key



  

Password cracking cost

● 50 minutes work per guess to generate all 256 possible AES keys

● Weak password  (30 entropy)  51072 CPU-years
● Bad password    (19 entropy)        25 CPU-years

           



  

Defenses

A. Password

B. Object IDs

C. Keysafe servers



  

keysafe servers

● Store only fixed size objects (no large data)
● Store an object by ID
● Retrieve object by ID 
● No object ID enumeration
● Self-tuning proof of work to access
● Accessible only via Tor



  

keysafe servers

● Other server requirements and best practices (warrant canary)

https://joeyh.name/code/keysafe/servers/

● As long as 2 of 3 keysafe servers are uncompromised, no mass 
password cracking.

● Best hosted by well-known, broadly trusted organizations.

https://joeyh.name/code/keysafe/servers/


  

Object ID generation

    

                            

                               

                                  

                                                

Name Other name Keyid

saltcombined name

argon2 10 minutes

base ID

+1
+2

+3

ID1

ID2

ID3

sha256

sha256

sha256



  

Object IDs

● Attacker needs object IDs to download objects from servers
● Each name guess takes 10 minutes CPU time to calculate 

object IDs

● Two colluding servers can perform a correlation attack to find 
related object IDs

● Servers don’t record timestamps, or keep logs, to prevent 
correlation attacks after the fact



  

Current status

● keysafe client and server implementation in Haskell  (3600 LoC)
● In Debian (experimental)
● Needs more design and implementation security review

● Three keysafe servers

1) Purism 

2) Faelix

3) Mine at Digital Ocean
● More servers needed

https://puri.sm/
http://www.faelix.net/


  

Is keysafe safe enough?



  

Option for the more paranoid

● Generate 6 shares, with 4 shares needed to recover GPG key
● Store 3 on keysafe servers
● Store 3 locally

● 1 local share + 3 from servers
● 3 local shares + 1 from server

● 64kb share can be stored locally in a variety of hard to detect ways
● End of partition
● Stenanography



  

Future proofing keysafe

● Decisions, decisions
– argon2 tuned to take 12 seconds on modern hardware
– argon2 tuned to take 10 minutes on modern hardware
– Shamir with 2 of 3 shares  
– 1 byte random salt
– AES 256 CBC

● May need to change in future in a new version
● Version number metadata would allow partitioning shards
● Solution: Varry object ID generation argon2 memory use parameter depending on 

version



  

keysafe

https://joeyh.name/code/keysafe/

Thanks

                                       https://patreon.com/joeyh

https://joeyh.name/code/keysafe/
https://patreon.com/joeyh
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